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This paper introduces a method to identify traps in molecular charge transport networks as
obtained by multiscale modeling of organic semiconductors. Depending on the materials, traps can
be defect-like single molecules or clusters of several neighboring ones, and can have a significant
impact on the dynamics of charge carriers. Our proposed method builds on the random walk model
of charge dynamics on a directed, weighted graph, the molecular transport network. It comprises
an effective heuristic to determine the number of traps or trap clusters based on the eigenvalues and
eigenvectors of the random walk Laplacian matrix and uses subsequent spectral clustering techniques
to identify these traps. In contrast to currently available methods, ours enables identification of trap
molecules in organic semiconductors without having to explicitly simulate the charge dynamics and
is applicable to a variety of energy- or topology-based traps in homomolecular or mixed systems
with or without detailed-balance. As a prototypical system we simulate an amorphous morphology
of bathocuproine, a material with known high energetic disorder and charge trapping. Based on
a first-principle multiscale model, we first obtain a reference charge transport network and then
purposefully modify its properties to represent different trap characteristics. In contrast to currently
available methods, our approach successfully identifies both single trap, multiple distributed traps,

and a combination of a single-molecule trap and trap regions on an equal footing.

I. INTRODUCTION

Organic semiconductors (OSCs) are materials com-
posed of organic molecules that are often organized in
a disordered, amorphous structure, and exhibit semicon-
ducting properties. Unlike traditional inorganic semicon-
ductors, OSCs are flexible and allow for much easier tun-
ing of charge mobility, so they have found applications in
sensing devices [I], high-performance computing [2], or-
ganic light-emitting diodes [3], and organic photovoltaic
cells [4]. The functionality and controllable charge mo-
bility of OSC are to a large extent credited to so-called
traps, which at the microscopic level are the molecules
that can be occupied by charge carriers resulting in a sig-
nificant change of charge mobility [5H]. Those traps are
usually single molecules, or a region consisting of very few
molecules. Charge carriers can easily occupy those trap-
ping molecules, while altering external conditions likely
results in the release of carriers from the traps. Such be-
haviors lead to sensitive and controllable charge mobility
of OSC.

A wide range of OSC applications [9HI3] revealed that
by tuning the number of charge carriers one can achieve
controllable charge mobility. In trap dominated materials
where the carrier number is greater than that of traps,
only a portion of the carriers is captured by the traps
and the remaining carriers can experience fast transport.
For example, [14, [I5] show that in the Gaussian disorder
models used for the theoretical study of charge trans-
port in OSC, when the carrier number is increased by a
factor two, the mobility can increase by approximately
100 times. Intriguingly, traps also play an important
role for the conduction mechanism in inorganic electronic
materials, e.g., in the context of trap-assissted tunnel-

ing [T6], [17].

Zooming into the molecular resolution, charge trans-
port in OSCs is a sequence of transition events between
the localized states [I8, 19] and is modeled as a con-
tinuous time random walk (CTRW) process [20]. The
transition rates of carriers depends on all the individual
molecules’ geometries and relative orientation, which af-
fect electronic structure properties such as the energy lev-
els, electronic coupling elements between the molecules,
and reorganization energies. Those quantities can be cal-
culated from a first-principle multiscale model detailed in
Section [

On a macroscopic level, traps are often considered in
the literature in terms of the energy density of state
(DOS) p(E), typically assumed to be Gaussian curves or
exponential. In equilibrium, the mean energy of a charge
carrier in the DOS is

B I7 Eg(E)p(E)dE
< [ 9(BE)p(E)E

(1)

Here g(E) = [exp(Ek;?F) + 1]7! is the Fermi-Dirac
distribution with the Fermi energy Er determined by
=5 9(E)p(E)dE = N, with N, being the number of
charge carriers. Molecules with energies much lower than
E, are then considered as (deep) traps. However, such
a qualitative criterion is insufficient to identify traps in a
molecular charge transport network for several reasons:
First, the estimate of F, is based on a chosen model DOS
which has some assumed continuous distribution. A re-
alistic material, even on the scale 100 nm, will, however,
not exhibit such a continuous DOS. Second, a discrete
version of Eq. depends on the number of molecules in
the system, and the equilibrium energy in such a discrete



DOS is dependent on system size [2I]. Third, focusing
on the DOS alone ignores other contributing factors to
the charge dynamics, or the features of the transport net-
work, such as electronic coupling elements between pairs
of neighboring molecules, structural details of the ma-
terial and or spatial correlations. These details are con-
nected to the variety of physical sources for traps, e.g., in-
terfacial effects, defects in molecular packing, or chemical
impurities. In some of these cases, going from the macro-
scopic DOS to the molecule-specific information allows
considering molecules with high Boltzmann occupation
probabilities in equilibrium p; = exp(8E;)/ Y, exp(SE;)
(with 8 = (kgT)~!, E; the energy of molecule i, and
T the temperature) as traps. However, besides being
similarly problematic as the DOS in defining a thresh-
old value to use, this approach also relies on the pairwise
intermolecular transfer rates obeying detailed balance,
does not cover topology-based traps, and alone is insuf-
ficient to identify trap regions in materials with strong
spatial correlations. This makes it difficult to provide a
quantitative definition of traps that can be used for iden-
tification of all trap characteristics on an equal footing.

At present, there are no methods for the identification
of traps in molecular charge transport networks that per-
form reliably for all different trap types. Few attempts
have been reported in identifying trap regions, or clus-
ters, based on analyzing the actual simulated dynam-
ics, e.g., via kinetic Monte Carlo (KMC) [22]. Quali-
tatively, once entered into such a trap region, the ran-
dom walk (representing the charge dynamic of a single
carrier) transitions mostly within it and escaping it is
a rare event, making such KMC simulations very time-
consuming. Two methods to accelerate KMC simula-
tions which indirectly involve trap identification have pre-
viously been discussed. One is based on the (stochas-
tic) watershed algorithm filling regions (”basins”) in the
spatially resolved energy distribution [23]. This purely
energy-based criterion does, however, not consider ad-
ditional details of the factors influencing the molecu-
lar charge transport network. The second method [24]
is based on a graph-theoretic decomposition (GD) and
makes use of the fact that in the presence of trapping
regions the Markov chain on the molecular charge trans-
port network is nearly completely decomposable [25], al-
lowing the associated graph to be partitioned into sub-
graphs. While this method takes the full information of
the hopping-type dynamics into account, it is sensitive
to the choice of parameters (related to, e.g., graph con-
nectivity properties or transition rate ratios) and is not
successful in identifying single trap nodes in the graph
(as we will also discuss in Section IV A 1).

In this paper, we propose a new method that builds
upon the idea of graph partitioning by using spectral
clustering based on a specific type of Laplacian matrix of
the graph [26], 27]. The aim of this method is to separate
the graph into partitions, by minimizing a normalized cut
cost function, such that the random walk processes rarely
transitions between different partitions. While obtaining

a minimized normalized cut is a NP-hard problem, a re-
laxed solution of this discrete optimization problem can
be obtained from the eigenvectors of the random walk
Laplacian matrix which will be introduced in Section [[TI}
Our proposed method includes an effective heuristic to
determine the number of traps or trap clusters based on
these eigenvalues and eigenvectors of this random walk
Laplacian and subsequent performing spectral clustering
(using K-means clustering) to identify the traps. The for-
mer depends on a single threshold parameter for which
we find an optimal choice nearly independent of the spe-
cific system.

Using the charge transport network resulting from
a multiscale model of an amorphous morphology of
bathocuproine (BCP) [28], a molecular material with
known high energetic disorder [29], low charge mobil-
ity [30], and complex charge trapping behavior, as a base-
line with subsequent modifications we demonstrate that
our approach successfully identifies energy-based single
traps, multiple distributed traps, and a combination of a
single-molecule trap and trap regions on an equal footing.
It is furthermore shown that the approach is robust un-
der application of external electric fields and also detects
topology-based traps and traps in mixed-molecular ma-
terials that are not energy based without modifications
to the algorithm. We also find a strong relation between
the cost function associated with the normalized cut and
the charge-carrier dynamics simulated in a time-of-flight
setup [31] [32], as well as the physical characteristics of
the trap (regions).

In what follows, Section [[T] will introduce the elements
of the first-principle multiscale model used to obtain
the molecular charge transport network of BCP based
on a combination of classical molecular dynamics (MD)
with quantum electronic structure theory on the level of
density-functional theory (DFT), and the calculation of
the time-of-flight to assess charge-carrier dynamics of the
model. In Section [[TI] we give the details of the spectral-
clustering based trap identification method we propose
in this work, including the determination of the cluster
number and K-means clustering. The results of the ap-
plication of this method to the BCP system and its mod-
ifications to cover different trap types is presented and
discussed in Section [Vl A brief conclusion and discus-
sion concludes the paper.

II. MULTISCALE MODEL

To create the baseline molecular charge transport net-
work of BCP, we employ a multiscale model which con-
nects morphology simulations based on classical MD with
quantum-classical methods to evaluate the Marcus rate
for electron transfer between two molecules i and j:
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where £ is the reduced Planck constant and kg the Boltz-
mann constant. The temperature T (in K), the charge

of the carrier ¢ (in ) and the external electric field F
(in V/m) can be considered the external, environmen-
tal parameters of the simulation. The vector 7j; =
(rfj,r?j,rfj)T connects the center-of-masses (COMs) of
molecules ¢ and j, which is our setup calculated using
cyclic boundary conditions in the Cartesian z- and y-
directions. The remaining physical, material-specific (or
rather transfer-pair-specific) quantities are the reorgani-
zation energy R;;, the electronic coupling J;;, and the
energy difference E;; = E; — E; (all in eV). With the
information about the molecular COMs and the rates,
one can construct the graph G = (V, W) on which the
CTRW takes place. Here each node ¢ € V corresponds to
a molecule and W : w;; is the weighted adjacency matrix
represented by the Marcus rates. A rate is only consid-
ered between molecules ¢ and j if their closest-contact
distance is smaller than r.uog = 0.5 nm.

A. Molecular Dynamics

Atomistic molecular dynamics simulations of bulk
amorphous BCP are conducted using the GROMACS
software package [33], employing a gromosb4a7 type
force field obtained via the tool Automated Topology
Builder [34]. Initially, 1000 BCP molecules are randomly
placed in a cubic cell with a side length of 10 nm. Periodic
boundary conditions are applied throughout in all three
spatial directions. After energy minimization, the system
is simulated for 1ns at a constant temperature of 300 K
and constant pressure of 1 bar in the NpT ensemble using
the V-rescale thermostat [35] with the coupling time con-
stant 0.1 ps and the Parrinello-Rahman barostat [36] with
a time constant for pressure coupling 2 ps. The leap-frog
algorithm [37] is used to integrate the equation of motion
with a time step of 1fs.

In the next step, we employ simulated annealing to
first increase the temperature to 800 K during a period
of 0.5ns, i.e., well above the glass transition tempera-
ture of the material. The system is maintained at the
temperature for 1ns before cooling back down to 300 K
during a period of 0.5ns. Such heating-cooling cycle is
repeated three times. After this simulated annealing, a
production run is conducted for 2ns using the NpT en-
semble. The final configuration of BCP is chosen for the
further steps in the multiscale model, whose configura-
tion is a cubic box with a length of 8.1 nm and a density
of 1.13g/cm3. This is consistent with the experimentally
measured value of 1.12g/cm?® [38] and another reported
MD result of 1.16 g/cm? [39].

B. Electronic Structure Calculations

Effective single-electronic wave functions ¢;(7) and as-
sociated energies ¢; for a system with N electrons are

determined as solutions to the Kohn—Sham equations [40]

(=573 + v 9+ () + oxcll() ) 10
= H () = ein(7),

(3)

where vext In an external potential (typically from
the nuclei), wvplp] the electrostatic Hartree poten-
tial of a classical charge density p(7), and wvxclp]
the exchange-correlation functional containing explicit
quantum-mechanical electron-electron interactions. The
charge density is determined from the single-particle

Nei
wave functions as p(7) = 3. |¢(7)|°. As the Hartree
I=1

and exchange-correlation potential depend on the thus
defined density, solutions to Eq. [3] have to be found self-
consistently. This corresponds to finding the ground-
state density po that minimized the total energy of the
system

Um:nw+/%mw®ﬁ+%w+amm<®

where T[p] is the kinetic energy, Enlp] and Exc[p] the
Hartree and exchange-correlation energies, respectively.

The practical calculations in this work have been
performed with the ORCA software [4I] using the
BHANDHLYP exchange-correlation functional [42] with
the def2-tzvp [43] basis set to represent the Kohn-Sham

—5

wave functions ¢ ()

C. Calculation of Marcus Rates

Equations [3] and [ can be solved for different total
charge states x = n,c and corresponding equilibrium ge-
ometries X = N,C, where n and N stand for "neutral”
and c¢ and C for "charged”. The respective total energies
will be denoted in the following as U*X, dropping the
explicit mention of the functional dependency on p for
compactness. The reorganization energy R;; for charge
transfer from molecule ¢ to molecule j in the Marcus rate
Eq. [2is a sum of contributions from structural changes
after molecule ¢ donates the charge (R}') and molecule j
accepting the charge (Rf) [19} 30]. It is calculated as

Rij= R} + R =UPC —UMN + USN —UsC. (5)

Specifically for BCP, we obtain the value R;; = 0.49¢V,
which is considered a single-molecule quantity in homo-
molecular materials.

For the remaining quantities that depend on the ma-
terial morphology (site energies and electronic coupling),
special care is taken to avoid discrepancies between the
molecular structures obtained via classical MD and the
DFT calculations. To remove bond length fluctuations
introduced by molecular dynamics simulations, as they
are already integrated out in the derivation of the rate



expression, molecular fragments with rigid, planar 7 sys-
tems are substituted by DFT-optimized versions [I19].
The site energy E; = Ef — L} is the difference between
the total energies of the system in which molecule ¢ is
carrying a charge or not, corresponding to the ionization
potential in case of hole transport and the negative of
the electron affinity in case of electron transport. These
total energies in turn consist of different contributions
associated with different physical mechanism, i.e.,

E;E — UZwX + Eia:,static + Ez:lv,polar’ (6)

where U#%X is the intramolecular contribution from sin-

. stati 1
gle molecules as above, while Ef"**" and E]"*”*" are
contributions arising from intermolecular interactions.

In the multiscale approach used in this work, these con-
tributions are calculated with a microelectrostatic model
using parametrized point charge representations for the
molecular electrostatic potential [44] and atomic dipole
polarizabilities to model the self-consistent response of
the molecules to the associated fields [45]. Long-range
electrostatic interactions are accounted for via a periodic
embedding of aperiodic excitations based on Ewald sum-
mation [46],[47]. Polarization effects are considered within
a cutoff of 4.0 nm around each individual molecule. Prac-
tical calculations of the site energies are performed using
the VOTCA software [19, 48-50]. The resulting site en-
ergy distribution for BCP is shown in Figure [12[a) in

The coupling element J;; between molecule ¢ and j
is calculated using the Dimer-Projection Method [51].
In the case of hole transport, it uses the Kohn—Sham
wave functions of the highest-occupied molecular or-
bital (HOMO) of the isolated molecules (monomers)
HHOMO () and ¢JHOMO (), the Kohn—Sham Hamiltonian
HES (see Eq. |3)) of the dimer and the associated full set
of wave functions {¢p(7)}. Specifically, the coupling ele-
ment is determined as:

JZOJ — %(6’1 + Gj)SZ“ (7)
1-57,

Jij =

where Jioj = <¢¢\H§S|¢j>a € = <¢¢\H1}:><S|¢i>v € =
(¢;|HES|p;), and Sij = (¢i|¢;) with bra-ket notation.
The Hamiltonian of the dimer, Hgs (see Eq. 7 is diag-
onal in its eigenbasis {|¢}))} with eigenvalues {e}}, so
HES = diag(eP). With the projections of the monomer
functions on the dimer eigenbasis, i.e., pir, = (¢i|oF)
and pjr = (¢;]¢F), J3 can be calculated as Jf =
P;Fdiag(ED)Pf = P;F(j)pi(j) and S;; =
p.p;. All of these operations are performed in the ba-
sis set representation of the Kohn—Sham wave functions
(see Sec. as implemented in VOTCA. The result-
ing distribution of coupling elements for BCP is shown

in Figure [12|(b) in

Similarly, e;(

D. Time-of-flight Calculation

After computation of the Marcus rate from the mul-
tiscale model and defining the graph G = (V, W), the
charge dynamics can be modeled as a continuous-time
random walk process on the graph. To model the Source-
Sink conditions, some vertices are used as Source to rep-
resent the electrode where charge carriers are injected,
and some vertices as Sink where charge carriers are de-
tected and time-of-flight (ToF) is recorded. Specifically,
we consider as source vertices the molecules with a COM
component 7 < 0.5nm, and as sink vertices those with
r? > max(r?) — 0.5nm. As a result, the graph retains
the cyclic boundary conditions only in the Cartesian y-
and z-directions.

In the model, each node can be occupied by at most one
charge carrier, so a system with N molecules and N, < N
charge carriers has a total of ( ]]\\,l ) occupation situations.
While spin is not explicitly taken into account, the as-
sumption of such a Pauli-like exclusion is a computation-
ally effective way to avoid the calculation of explicit long-
range Coulomb repulsion between electrons at different
sites. Note that the formation of double excitations or
bi-polarons is not included in the main transport dynam-
ics model and requires different rate formulations. Each
of these occupation situations is considered as a state s.
If all the carriers’ occupations are in a Source node, the
state is called a Source state, and if at least one of the
Sink nodes is occupied, the state is called a Sink state.
The transition rates between the states can be obtained
from the matrix W : w;;, since the connectivity of states
is encoded in the connectivity of the nodes (molecules),
as detailed in [32]. In particular, the transition rate Qgg
from state s to 8’ is:

0
st’ == {
wij

Then the transition probability from state s to s’ is
psss = $dss/Ds where Dg := ZS#S Q.. And the ex-
pected time from state s to reach the Sink state 75 is
calculated [32] via:

s is not connected to s,

(8)

s is connected to s’ due to (i, 7).

9)

s —

B i + D g 25 Pss' T if s is not a sink state,
0 else.

Since we need to consider all possible starting nodes of
the carriers, all the Source states need to be considered.
The random walk process has been modeled as a parallel
electric network of capacitors [20], and accordingly, we
take the ToF to be the harmonic mean:

> (Ts*)‘ll ; (10)

s€Source

T = Nsource [

with Ngource the number of source states. Note that
the above model does not include a constant supply of
charge carriers at the source but instead corresponds to a



simulation with a short, pulsed creation of charge carri-
ers, equivalent to KMC or Master Equation based mod-
els [32].

III. SPECTRAL CLUSTERING METHOD

In this section we present the theoretical background of
spectral clustering for trap identification, including a re-
capitulation of details about the random walk Laplacian
matrix, the graph partitioning based on its eigenvalues
and eigenvectors, and the K-means clustering algorithm.
We will also propose our heuristics for determining the
number of traps, within this framework.

A. Random Walk Laplacian Matrix and Graph
Partitioning

Identifying traps within a multiscale modeled molecu-
lar charge transport network corresponds to finding the
regions of nodes in the corresponding graph in which the
random walk process spends a long time, while the tran-
sition between the regions is rare.

In spectral clustering theory, see for example [27]
Proposition 5, finding such regions of nodes corresponds
to cutting through the graph such that the resulting par-
titions G, -+ , Gy minimize the objective function

k —
NCut(Gy, -+, Gy) ==y M, (11)

where cut(G;, G;) = 1 (Wa, a,+Wa,.q,), with Wa B :=

Y. wij, and vol(G;) the volume G;, calculated by
i€A,jEB
summing up the weights of the edges within G;.

In the context of trap identification, the partition that
minimizes Eq. will correspond to the traps in the
system and the remaining molecules. That is, we have
K = k — 1 traps and one element G; will represent all
non-trap nodes.

The problem is that solving Eq. is known to be
a NP hard problem. However, a relaxation of it can be
solved using the so-called random walk Laplacian matrix.
For a weighted graph G = (V, W) define the out-degree
matrix by D:=D; ; = j Wijs and the Laplacian matrix
by L = D — W. The random walk Laplacian matrix of
a graph G is given by

L =I-D'W, (12)

So L,y is the Laplacian matrix normalized by D.

Note that the charge transport graph is directed and
hence the Laplacian matrix is not symmetric in general.
Nevertheless, the random walk Laplacian L,,, has a real-
valued spectrum. This follows from the fact that

Ly =I1—D 7(I - Lgym)D 2, (13)
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where Lgym = I-D~>WD~ 2 is the normalized symmet-
ric Laplacian. So L,y is similar to Lgym, and since the
latter has a real-valued spectrum, L, has IV real eigen-
values: A1 =0 < Ay < A3 <--- < Apn. The fact that L,
has real eigenvalues enables the use of spectral clustering
methods for our directed charge transport network.

The idea behind spectral clustering is to consider the
relaxation of the NP hard discrete minimization problem
for NCut which tries to find T € RY** that mini-
mizes

min Tr(T'D"2L,, D 2T) (14)
TERN Xk
subject to the constraint that T/T = I. The solution
T* to Eq. [14]is formed by the first k eigenvectors of the
random walk Laplacian matrix L.

It should be noted that solving [I4] does not yield a
partition of the graph, as this is a relaxation of the true
discrete optimization problem we wish to solve. To con-
struct a partition in practice a K-means algorithm, intro-

duced in the next subsection, is performed on the rows
of the solution T* to [14l

B. K-means Clustering Algorithm

In general, the K-means clustering method parti-
tions a dataset consisting of N data points into dis-
tinct clusters, minimizing the distance between points in
each cluster. Let £k > 2 and consider N data points:
{x1,Xo, -+ ,Xx} where x; € R% TFor any partition
Ci, -+ ,C of {1,2,..., N} we define the cost function

k
1
Z(Cla"’ ’Ck) = E 2|Cl| E ||Xz 7Xj||g' (15)
=1

4,J€C;

The objective of K-means clustering is to find the par-
tition Cf,---,C; that minimizes Eq. That is, the
partition minimizes the pairwise squared distance within
each cluster normalized by the cluster size. A practical
approach to this is via a local search algorithm such as
Lloyd’s algorithm [52]:

Algorithm 1 Lloyd’s algorithm for K-means clustering

1: Input k and x1,x2, - ,xn, Ci, -+ ,Cr are randomly
initialized

2: while not converged do

3: Compute Cl:ﬁ'g x; for [=1,2,--- k

K L

4: Update Ci,---,Cr by assigning each point X; to
the cluster whose centroid c¢; is closest to.

5: If the cluster assignment did not change,
convergence is achieved.

6: end while

7: Return cluster assignment Ci,---,Ck.

In this work, the input N data points are the N rows
of the matrix T* that is the solution to Eq. The



resulting k clusters are then understood to correspond to
K =k — 1 traps in the system and the remaining group
of nodes representing the rest of the system.

C. Determination of the Cluster Number

For the description of the K-means clustering algo-
rithm it follows that one needs to provide an input k
for the number of clusters. The main problem, as is also
the case for our intended application, is that it often un-
clear what k should be. Therefore, in this subsection
will introduce an algorithm to determine the number of
clusters, which is based on the more commonly applied
eigengap heuristic.

Starting from spectral clustering theory, we know that
the multiplicity of the smallest eigenvalue 0 of a graph
Laplacian equals the number of connected components in
the graph G. If Gyq,---, Gy are the connected compo-
nents, then the eigenspace corresponding to eigenvalue 0
is spanned by the vectors {1, }¥_,. Here 1q, is the vec-
tor where elements corresponding to the nodes in cluster
G, are one and the rest are 0. This shows that both
the eigenvalues as well as the corresponding eigenvectors
contain relevant information about the possible number
of clusters.

Of course, in many applications, the graph is a single
connected graph and the interesting clusters do not re-
side in disconnected components. Hence, we cannot sim-
ply use the multiplicity of the first eigenvector. Instead,
a variety of ways to determine the number of clusters
have been discussed previously. For instance, Fraley and
Raftery proposed finding the number of clusters based
on the log-likelihood of the data [53], while Still and
Bialek suggested information-theoretic criteria based on
the ratio of within cluster and between cluster similar-
ity [64]. Tibshirani el at. used gap statistics on general
data points to find the cluster number [55]. Specifically,
in the heuristic eigengap method based on perturbation
theory k is chosen such that Ai,--- , A\ are very small
and Agy1 is relatively large [27]. In practice, it can how-
ever be difficult to implement this heuristic as it is not
well-defined what “relatively large“ is. This problem can
clearly be seen in the eigenvalues of L,y for the BCP
model system, as shown on linear and log scale in Fig-
ure a) and Figure (1] (b), respectively.

To overcome the non-obvious challenge of finding a
good k, we notice that the ratio of the eigenvalue A\;11/\;
is large for small indices ¢, as shown in Fig. c). As
the index ¢ becomes large, A\;;1/)\; becomes small. This
prompts us to utilize the index /¢ yielding the maximum
Ae+1/Ae as a good first guess for the number of clusters.

Additionally, the eigenvectors also contain important
information about possible clusters. For example, when
considering 2 clusters, the entries below 0 in the second
eigenvectors will correspond to nodes in one cluster while
those above 0 correspond to nodes in the other cluster.
From this, the idea is that we should only consider those

nodes 7 such that the i-th entry in the ¢-th eigenvector is
large in absolute value.

All together, our method first chooses the index £ such
that Agy1/A¢ is the largest. Then using the eigenvectors
corresponding to the first £ eigenvalues, we consider the
elements sufficiently distinct from zero. This is controlled
via a parameter a. For each of the first £ eigenvectors, we
will look at the induced subgraph on those nodes whose
entries are larger than a in absolute value. We then col-
lect the disconnected components of the corresponding
induced subgraph as separate graphs. After this we have
a collection of small subgraphs from which we will remove
all subgraphs that are themselves a subgraph of another
graph in this collection. This procedure leaves us with a
list of disjoint subgraphs given by the first ¢ eigenvectors
and we take k to be the number of these graphs plus 1.
The full procedure to determine the cluster number k is
summarized in Algorithm [2]

Algorithm 2 Determination of cluster number k

1: Input: G, L;w a.

2: Calculate (\;,u;) for i = 1,---, N, such that A\ <

Ao <o < An.

for i=2,3,---,N—1 do
u; < |us|/max(|usl)

end for

Calculate ¢ = argmax(%)

Denote empty set B = ()

for i=1,2,--- .,/ do
Set node list Q =0

10: for j=1,2,---,N do

11: if u;; > a then

12: add j to Q

13: end if

14: end for

15: Let Hi,...,H) denote the disconnected
components of the induced subgraph in G on the
nodes in Q.

16: Update B = BU{Hj,..

17: end for

18: for H,H' € B do

19: if H C H then

20: remove H from B

21: end if

22: end for

23: k=|B|+1

.,H]u}

Let us make a few remarks about this algorithm.
Firstly, to select ¢ such that Agyq1/Ae is maximum, the
algorithm starts from ¢ = 2 since the first eigenvalue is
always 0. This is also the only eigenvalue equal to 0 as we
only work with connected graphs. We then normalize the
eigenvectors corresponding to the selected eigenvalues as
|u;|/max(|u;|). The purpose for this normalization is to
make the algorithm more robust and less dependent on
the parameter a, which is used to indicate the entries of
eigenvector elements distinct from zero. In particular, we
can take 0 < a < 1. In general, the value of a should not
be too close to 1 to avoid missing relevant subgraphs. It
should also not be too close to zero because then it will
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FIG. 1. The first fifty eigenvalues of the random walk Laplacian matrix L;w (a) without log scale and (b) with log scale. The
first eigenvalue is zero and is not shown in the plot. (¢) Eigenvalue ratio A;+1/A; as a function of the index.

not be selective enough. In this work we pick different
increasing values of a starting at 0.9, to check how robust
the analysis is for a closer to 1. Finally, note that when
counting the total number of induced subgraphs, if the
subgraphs are contained in other subgraphs, those do not
contribute to the value of k.

IV. RESULTS

We begin with a short semi-quantitive analysis of the
effect of traps in a molecular charge transport network.
As the name suggests, once a charge carrier encounters a
trap, it will spend a significant amount of time in it and
the observed charge dynamics will be slow (large ToF).
However, if there are more carriers in the system than
traps, one can expect that once all traps are filled, the
remaining charge carriers are very mobile. Denote as N;
the number of traps, with N, the number of charge car-
riers as in Section and 7(N.) the ToF depending on
the number of charge carriers, evaluated, e.g., by Egs. [9]
and Then one expects the ratio 7(N.)/7(N. + 1) to
be large for N. = N;. Analysis of this ratio then provides
a qualitative indication of the effective number of traps
(depending on a definition of ”large”) in the transport
network but not their location or their physical nature.
In addition, the evaluation of 7(N,.) for large number of
carriers is computationally cumbersome [32].

To avoid such expensive calculations and still gain in-
sight into which molecules correspond to the Ny traps,
one can consider all different subsets Q(NV¢) of size N; of
molecules in the network. We then consider the ToF of a
single charge carrier 7(1) in the full system and in a sys-
tem in which the subset Q(V;) has been removed from
the network, 7¢(1). The removal of the nodes is moti-
vated by the fact that in the case of very strong traps,
carriers will not easily escape them and thus they will
for N, > N, be largely inaccessible to the mobile carri-
ers. In this scenario, one can inspect the ratio 7(1)/7%(1)
and identify traps from its ”large” values. Such change
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FIG. 2. The scatter plot of 7(1)/7%(1) for each node with in-
dex ¢. The only point with a value greater than 100 is the trap
node whose index is 66. Inset: A box of 1000 BCP molecules
simulated from MD. The Source and Sink molecules are high-
lighted by the blue color, and the molecule corresponding to
trap node having large 7(1)/7%(1) is highlighted by the red
color. The other BCP molecules are in gray color.

in ToF provides a qualitative and system-agnostic way to
identify traps in complex molecular charge transport net-
works, where site energy or other static properties alone
may not suffice.

In the special case with only a single trap N; = 1 the
set Q(1) is given by a single node index 4, and we can
inspect 7(1)/7%(1). This is shown for all i for the simu-
lated BCP system in Figure It is clear that there is
a single molecule node whose presence in the molecular
charge transport network affects the ToF by four orders
of magnitude. While it is intuitive to call this particular
node a trap in this specific case, it is less obvious in gen-
eral and the precise definition of a threshold value here is
hardly possible. Another drawback of using the inspec-
tion of the ratio 7(1)/7%(1), or its more general form, is
the need for many cumbersome ToF' calculations of the



( JJ\\,C ) different scenarios. It also fails to reveal any details
about the physical nature of the trap(s). This shows
that a general method that identifies traps in molecular
charge transport networks based on the graph structure
alone without the need to actually calculate the dynam-
ical properties is of great usefulness. Its microscopic in-
sight must, however, be compatible with the effects of
traps on macroscopic observables such as the ToF here.
Finally, we emphasize that due to the modifications of
the BCP baseline system, and some modeling choices
in the multiscale model, the reported charge transport
properties, such as time-of-flight or mobilities, should not
be compared to actual measured material properties, if
available.

A. Identification of Single-molecule Trap

From the above analysis of the ToF sensitivity to the
various nodes, we have identified node 66 is being a trap
in the simulated BCP system, with site energy -1.89eV.
We will refer to this node as the trap node and will denote
it as vgrap. In the following this trap node is used as the
reference to scrutinize approaches for trap identification
in molecular charge transport networks that solely rely
on network properties.

1. Results from Graph Decomposition Method

Before turning to the spectral clustering method as
proposed in Section [[II, we first show the results of
the graph-theoretical decomposition method [24], whose
technical details are summarized in [Bl The method con-
tains three adjustable parameters, a, 3,7v. The first two
are related to details of the connectivity of the graph,
whereas v is used to define a threshold involving the ra-
tios of transition rates. In application to multi-node traps
or trap regions, a choice of a, 5 = 0.02 and v = 0.2 has
been reported before [23].

We apply the GD method to BCP and calculate the
number of clusters n. and the total number of molecules
in the cluster containing the trap node, denoted as n,, for
different choices of the parameters. We find the results of
the GD method to be mostly insensitive to the choice of
« and f3 as shown in Figure[I3]in[B] The parameter v re-
lated to the rate ratios has, however, a significant impact
on the obtained clustering, as is shown in Figure [3[a) for
the range of 107° < v < 2-107!. For very small v, we
obtain a single large cluster equal to the whole system.
With increasing v the GD method yields more clusters.
Between v = 1073 and 102 one can see a rather sharp
transition in the size of the cluster that contains the pre-
viously identified trap node. At the onset of the transi-
tion (y = 5-1073), see Figure (b), the cluster contain-
ing this node contains more than 600 molecules. After
the transition (y = 1072, Figure c)), this size is mas-
sively reduced. For the previously recommended value of

(a) [ #1000 (b) y=
f:

Y
(d) v=0.1

2

(c) y=0.01

FIG. 3. Results of GD method on the BCP charge trans-
port network. (a) The total number of clusters (n.) after
performing the GD method, and the size of the cluster con-
taining the trap node (nm), as a function of GD parameter .
For three values of -, the BCP structures are visualized: (b)
v = 0.005, the red molecules indicate the cluster containing
the trap node with more than 600 molecules. (c¢) v = 0.01,
the 9 molecules in red indicate the cluster containing the trap
node, and the molecules in blue color contain 348 clusters (d)
~v = 0.1 with 4 molecules in red forming the cluster containing
the trap node.

v = 0.2, each molecule is a cluster by itself. Tuning the
parameter values of «, 5 does not help in identifying the
trap node and GD cannot directly detect the single trap
node that leads to large ToF, although the GD method
should group molecules into clusters where random walk
jumps are more frequent compared to jumps outside the
clusters.

2.  Results from Spectral Clustering Method

Turning to the performance of the spectral cluster-
ing method in application to BCP, we first show in Fig-
ure El(a) the ten smallest eigenvalues of the random-walk
Laplacian. We note that the first eigenvalue is numeri-
cally very close to zero, as expected by the theory. Fo-
cusing on the next two eigenvalues, one can see a strong
increase from Ao to A3, while the preceding eigenvalues
increase less quickly. These observations lead to a be-
havior of the ratio A;41/A; as shown in Figure [i|b) for
2 < ¢ < 10. The maximum of \;11/\; is larger than
80 when i = 2, while all other values are below 5. Our
procedure in Algorithm [2] will thus take ¢ = 2 in line 5.
Figure c) shows the outcome of the algorithm for differ-
ent values of the threshold parameter a ranging from 0.9
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FIG. 4. Results of the spectral clustering method for multiscale modeled BCP system: (a) The first ten eigenvalues of Lyw. (b)
Ai+1/Ai as a function of 4. (c) The number of clusters determined from Algorithm [2] as a function of a. (d)-(e) The first and

second normalized eigenvector elements of Ly as a function of node indexes. (f) The BCP system where molecules in red and
grey color are first and second clusters, respectively, as identified using the K-means clustering with k& = 2.

to 0.9999. We note it robustly yields the value k = 2 for
the K-means clustering step, meaning that there should
be one trap in the system. The reason for the observed
robustness is clear from the inspection of the normal-
ized elements of the first and second eigenvectors in Fig-
ure [d{(d) and (e), respectively, which show a single entry
(corresponding to the trap node) being 1. Accordingly,

the K-means clustering step is performed with & = 2

yielding one cluster that only contains the previously
identified trap node, while the other cluster is the rest
of the system, visually indicated in Figure (f)

3. Relation between Cost function and ToF

The spectral clustering method very clearly identified
the trap node in the BCP system. This is also reflected
by the fact that the value of the cost function for
the proposed cut is 8.8 - 107'2, while the cost of cutting
any other single node is 0.99. We thus see a clear indi-
cation that a low cost is a qualitative signal of a possible
trap. On the other hand, it is known that the energy
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FIG. 5. In a BCP system, the trap node’s energy FEirap is

varied from -2.4eV to -1.6eV. (a) Dependence of the cutting

cost Z(C1,C2) and the ToF 7 on FEirap. (b) Dependence of
Z(C1,C2) on 7.

of a trap node qualitatively influences the recorded ToF.
This raises whether there is also a relation between the
site energy of single-molecule traps and the cost of the
corresponding cut, and hence between the cost function
and the ToF. To investigate this, we take the simulated
BCP system, modify the site energy FEi;ap of the trap



.
1024 .
-—-- T Q\
N e 5
L, 107 ®
~ \
L 6. b
_ Q
10724 Q
Q
O
102 104 10° 108

|F| [V/m]

FIG. 6. (a) The 1-carrier ToF 7, and the ToF 7"t when
removing the node virap as a function of the electric field.

node, ranging from a small energy value (-2.4eV) to a
relatively large value (-1.6eV) and determine the cost of
cutting according to our method this node and the ToF
in the system. We note that when the original trap node
has a site energy above (-1.6 eV) it is no longer defined as
a trap by our algorithm, which explains why we use this
as the upper bound on the energy for this experiment.

The results are shown in Figure [f[a). For low values
of the site energy, one simultaneously observes a large
ToF and small cost, indicating both a clear trap charac-
teristic and straightforward identification via our spec-
tral clustering method. Increasing the energy leads to a
decrease of ToF and an increase of the cost of cutting
the node from the graph. Moreover, when plotting the
pairs of cost function as a function of the ToF, as in Fig-
ure b), we observe a power-law dependence between the
two quantities. Together these results show that indeed
the cost function associated with cutting out a single-
molecule trap and the ToF of the system are intricately
related.

4. Effect of an Applied Electric Field

To further validate the robustness of our spectral clus-
tering method, we investigate its performance under non-
equilibrium conditions by introducing an external electric
field as typically used in operating conditions for devices
based on organic semiconductors. The charge dynamic
is then a drift-diffusion process rather than a diffusion.
The electric field we applied is F = [F,,0,0] where F,
has values in the range 0 to 108 V/m.

The inclusion of an electric field in the Marcus rates
modifies the transition rates between molecules, as the
field introduces a directional bias in charge carrier mo-
tion. Figure [0] shows that as the electric field strength
increases above 106 V/m, the ToF decreases significantly,
indicating a faster charge transport along the direction of
F. Using the proposed method, the node viap is found
as a single cluster across the range of the studied electric
field. Removing vtyap results in a significant decrease in
ToF as indicated by the gap between 7 and 7%2r. As the
electric field | F| > 106 V/m, the gap between 7 and 77>
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FIG. 7. Sensitivity of ToF and performance of the GD method
for multiple distributed traps. (a) The ratio 7(1)/79(1) as a
function of the energies of the nodes in @ = {vi,v2, -+ ,vs5}.
(b) The number of clusters nq after performing the GD
method when the nodes in @ have energies £ = —1.8eV,
and the size of the cluster containing a specific node np,;, as
a function of GD parameter +.

shows signs of reducing. This phenomenon suggests that
an electric field, having the direction drift force for the
charge dynamics, can potentially reduce the trap effects.

B. Identification of Multiple Distributed Traps

The previous section shows that the spectral cluster-
ing method can reliably identify a single trap node as
it occurs in the modeled BCP system. In the follow-
ing, we will scrutinize if the same holds in a system
with multiple trap molecules which are not connected
with each other — a scenario we refer to as multiple dis-
tributed traps. Within the spectral clustering method,
we expect that having multiple distributed traps will in-
crease the cluster number k for the K-means clustering
steps as given by Algorithm As the simulated BCP
system does not have multiple distributed traps, we mod-
ify it taking the trap node we found and 4 other nodes

(Q = {v1 = Vtrap, U2+ ,U5}), which are not connected
by an edge in the charge transport network and set their
site energies all to F = —1.8eV, which is close to the site

energy of the original trap node. It can be seen from the
dependence of the ratio 7(1)/7%(1) on E in Figure a)
that such a value points indeed to a very pronounced
trapping effect of the charge carrier.

First, we consider the predictions from the GD method
in Figure b). We again show the resulting number of
clusters ng and the number of molecules n,,, in each of
the clusters containing one of the 5 prepared trap nodes
v;, depending on the parameter v in the GD method.
Qualitatively, one can observe the same behavior as for
the single trap case: the method only yields isolated traps
if nearly each molecule is its own cluster, or the whole
system is a single cluster. Evidently, the method fails
to correctly characterize the multiple distributed traps
situation in the charge transport network.

Turning to our spectral clustering method, we see in
Figure [§(a) and (b) that the largest value for the ratio
is still at ¢« = 2, as was the case for the single trap sit-
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FIG. 8. Results of the trap identification by spectral clustering methods for the BCP systems with multiple distributed traps.

(a) The first ten eigenvalues of Lyw. (b) Aiy1/A; as a function of 4. (c¢) The number of clusters determined from Algorithm
as a function of a. (d)-(e) The first and second eigenvector elements of L, as a function of node indices. (f) The BCP system

where molecules in red color are molecules consisting of nodes v1, vz, ,vs5. Each red molecule is partitioned as one cluster.
The grey molecules are one cluster, as identified using the K-means clustering with k = 6.

uation. However, unlike that situation, when inspecting (a) (b)

the first two normalized eigenvectors in Figure d,e), * .

one can clearly see five and four relevant non-zero ele- — N 750 4

ments, respectively. Overall, the determined number of g1 AN _ M€ |
T ; e . v \ =500 2

unique induced subgraphs is k = 6, which indeed implies = \

that there are 5 traps in the system shown in Figure[§]f): 75

102 ' 250 ../". 3
the five individual distributed trap nodes and one cluster N g
that is the rest of the system. This shows the necessity R W O 1T
of the addition step in Algorithm The result £k = 6 E [eV] 14
is also relatively robustly with respect to the choice of

the method’s parameter a as shown in Figure c)- Only FIG. 9. Sensitivity of ToF and performance of the GD method
when a > 0.9 is used, the spectral clustering method for trap regions. (a) The ratio 7(1)/7%(1) as a function of
yields & = 2. So again, using Algorithm [2| with a = 0.9

the energies of the nodes in Q = {v1,v2, -+ ,v6}. (b): The
finds the correct number of clusters & = 6, and also the number of clusters after performing the GD method when the
right trap nodes. nodes in @ have energies ¥ = —1.8 eV, and the maximum size

of the cluster containing at least one specific node in @Q, as a
function of GD parameter +.

C. Identification of Trap Region

It is known that for some materials the site energies  dipole interactions as in amorphous Alqs [19] 23] [56].
are correlated in space, e.g., due to strong permanent

This leads to a situation in which several sites with low
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FIG. 10. Trap identification results using spectral clustering methods on the BCP system with trap regions. (a) The first ten
eigenvalues of Lyw. (b) Aix1/\; as a function of 4. (¢c) The number of clusters determined from Algorithm |2 as a function of a.
(d)-(e) The first and second eigenvector elements of L,y as a function of node indices. (f) The BCP system where molecules

in red color show v; as a single molecule cluster and the connected region @ = {wv2,---,vs} is a second cluster. The gray
molecules form the third cluster, as identified using K-means clustering with k = 3.

energy are connected, forming a trap region instead of
single-molecule traps as studied in the previous two sec-
tions. A random walk process that enters such a region
tends to jump among those nodes with only a small prob-
ability of escaping the region. This scenario was the origi-
nal motivation for the GD method as it aims at partition-
ing the graph into clusters that the random walk spends
a significant amount of time in.

Here we will investigate whether our proposed spectral
clustering methods is able to identify such trap regions in
the BCP system. Because the BCP system does not have
strong spatial correlations, there are no such trap regions
in the as-modeled molecular charge transport network.
We therefore select six nodes Q = {v1 = Vgrap, V2, .., V6}
consisting of the original trap node and a distant node vy
disconnected from v; = vgrap plus its four closest neigh-
bors wvs,v4,vs5,v5. We then set the site energies of the
nodes in @ to a value E so the v,y is a single-molecule
trap while Qregion = {v2,...,v6} is trap region. In
Figure @(a), we show 7(1)/79(1) for different values of
E and observe a clear trapping effect on the ToF for

E < —1.6€V. In the following we set E = —1.8¢eV.

Figure[Jb) shows the result of the GD method to iden-
tify the traps: the total number of clusters n. and the
maximum cluster size n,, when m is one of the nodes
in Qregion for different values of v. When v = 106,
Ny = 9, and Qregion is successfully identified as a single
cluster and the rest of the 995 nodes as another cluster.
As in Section [VA] the isolated trap node is not identi-
fied as a separate cluster. As - increases, more clusters
appear, and when v > 1072, the five low-energy nodes in
Qregion are no longer partitioned into one cluster.

Turning now to the trap identification by spectral clus-
tering, we show the eigenvalues of L., and the ratio
Ait+1/A; in Figure a7b), respectively. We again observe
that the maximum of the ratio is found at ¢ = 2. The full
algorithm yields a value k = 3, indicating the presence of
two traps. As can be seen from Figure [10c), the deter-
mination of k is very robust with respect to the choice of
the parameter a. Looking at the elements of the first two
normalized eigenvectors (see Figure d,e)) we clearly
see a single large entry and a group of five other large
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FIG. 11.

Visualization of two non-energy based trapping
scenarios: (a) the node verap (blue) with the lowest energy
and its (green) represent different molecular types with non-
symmetric reorganization energies is correctly identfied as not
being a trap. Two BCP molecules in red color, v; and wva,
are two single clusters identified as actual traps using the
K-means clustering with & = 3. (b) The neighbors of verap
are colored in light-dark and their electronic coupling element
with virap are small. Two BCP molecules in red color, v; and
vs, are two single traps identified using the K-means cluster-
ing with £ = 3 in this topology-based scenario.

entries, representing Qregion- Finally, K-means cluster-
ing with k = 3 yields the three correct clusters as shown
in Figure f): in red the isolated trap node viap and
the trap region formed by Qregion and in gray the third
cluster containing all other molecules.

It should be noted that there is a second large jump
for the eigenvalues at ¢ = 4. To further check the per-
formance of our method we also perform the spectral
clustering method on the first four eigenvectors, instead
of the first two. This gives k = 4 with the only difference
being that there is now a fourth cluster which comprises
a single node v7;. However, when checking the effect of
this node on the ToF via the ratio 7(1)/7%(1) with node
vy added to @, we find that the ratio is ~ 1, i.e., node
v7 does not have the system characteristics we associated
with a trap. This supports the choice of £ = 2 yielded by
our Algorithm

D. Non-symmetric reorganization energies

In materials containing different types of molecules
and complex molecular geometries, the reorganization
energy R;; for charge transfer between molecules is non-
symmetric, i.e., R;; # Rj;. In such cases, the rates for
this transfer do not obey detailed balance and the equilib-
rium Boltzmann population argument mentioned in the
Introduction cannot be applied, and the lowest energy
site may not necessarily act as a trap, even if it has a sig-
nificantly lower site energy compared to the rest of the
network.

To illustrate that our proposed method is also able to
correctly identify traps in such a situation, we modify
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the BCP system by introducing a non-symmetric reor-
ganization energy for specific pairs of molecules. We se-
lect the node viap with the lowest site energy E,,, . =
—1.80eV and adjust the reorganization energy R such
that Ry, ; = 0.1eV and Rj,,,,, = 0.2eV. We show
this setup in Figure [11a), where the node vyap is col-
ored in blue and its neighbors are in lighter color.

Due to the non-symmetric reorganization energy, the
transition rate from w,p to its neighbors is not small,
despite the low energy. This results in a situation where
the low-energy site is not a trap because charge carriers
can easily escape from it due to the high forward tran-
sition rate. In contrast, the spectral clustering method
(see detailed results in Fig. [14] in the Appendix), which
considers the full graph structure and transition rates,
correctly identifies that this site is not a trap. Instead,
the method identifies nodes v; and vy with site energy
E,, = E,, = —1.70eV (in red color shown in Fig. [I1|a))
as the isolated single traps in this system, putting those
two nodes in their own cluster and the other 998 nodes
in another.

The actual calculated ToF support the results of the
spectral clustering method. For the system without re-
moving any node we find 7 = 5.7-10"'s. Removing
Vtrap, On€ obtains 7V=» = 55 -107!s, while removing
vy, 09 yields 7(v172) = 1.4 x 1073s. We clearly see that
removing the lowest energy site vy,p has hardly any effect
on the ToF, while the nodes identified from our proposed
method influence the ToF by more than two orders of
magnitude.

E. Topological coupling-based traps

Next to mixed molecular material compositions, in
general structural features can also lead to charge trap-
ping behavior in materials. To mimic such a scenario
within the as-modeled BCP baseline system, we mod-
ify the electronic coupling element J,,, ; of the lowest-
energy site viap With its neighboring sites j. Specifically,
the electronic coupling elements J,,,,  ; between the low-
est energy site vyap (highlighted in blue in Fig. [15) and its
neighbors j has range: 1077eV? > J2 > 10 "eV?
Such a system is visualized in Figure b), where the
lowest energy site v¢rap is in color blue and its neighbors
are in light-dark color.

In such a case, even if a site has a very low energy,
the probability of charge carriers transitioning to or from
this site is extremely low, resulting in low occupancy and
hence no trapping effect in the non-steady state. While
using a solely energy-based argument would still classify
Vtrap 85 & trap due to its low energy, it does not exhibit
any trapping effect in practice, as carriers are unlikely to
be captured or released from this site. The ToF of this
system is 7 = 6.0 - 10~ !s, which is not chnaged after re-
moving vgrap. Applying our proposed spectral clustering
method (see the full results in Fig. [15]in the Appendix),
gives the same v, as before and a new site vz as two single



clusters while the remaining 998 nodes form a single large
cluster. Removing vy, v, the ToF is 7(¥1:%3) = 6.3.10 2,
indicating the real trapping effect of vy, vs.

V. CONCLUSION

In this study, we have developed and implemented a
novel method based on spectral clustering to identify
traps of widely different characteristics within molecu-
lar charge transport networks. Our approach is based
on the application of K-means clustering on the eigen-
vector elements from the Laplacian matrix with a pro-
posed heuristic based on eigenvalue ratio and eigenvec-
tor entries. The method avoids the complexities associ-
ated with calculating multiple-carrier ToF and overcomes
the need for system-dependent parameters. Its effective-
ness is demonstrated through the analysis of several trap
types prepared with a baseline multiscale model. We
successfully identified energy-based traps with a single-
molecule, distributed molecule, and region characteris-
tics. Our method also yields the correct identification
of topology-based traps and is applicable to other, more
general, situations (e.g., in mixtures with non-symmetric
reorganization energies) in which the transition rates do
not obey detailed balance.

This capability to identify and quantify traps without
extensive parameter tuning marks a significant advance-
ment over other candidate methods such as the watershed
algorithm and graph-theoretic decomposition, or purely
energy-based arguments. The added value of the spectral
clustering method lies in its ability to capture the inter-
play between site energies, transition rates, and the over-
all network structure. This makes it a more robust and
general approach for identifying traps in organic semi-
conductors, particularly in systems with complex charge
transport dynamics.
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Appendix A: Electronic Structure Calculation

The electronic structure parameters of the BCP
molecule calculated from the multiscale model are shown

in FigurdI2]
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Appendix B: Graph Decomposition Method

The full theory and implementation details of the
Graph Decomposition (GD) method are in [24]. Here
a summary of the GD method and its parameters is pro-
vided. The GD algorithm begins by taking a vertex of
minimal vertex degree in G and uses this vertex as the
basis of a cluster. Then each node v’ adjacent to v is
checked, and added to G if certain criteria are satisfied.
The process is repeated until no more nodes can be added
to G. At that stage, the nodes of subgraph G are re-
moved from G and classified as a cluster. The algorithm
begins again until all nodes are classified.

The criteria for including a node into a cluster are:

1. Either a completeness criterion or a fullness crite-
rion. 1) The completeness criterion requires that

% > « for some o > 0, where R(G) is the

ratio of the number of edges in the graph G to the
number of edges that G would have if it were com-
plete. In the case of G consist of only one node,
R(G) = 1 since G is complete. 2) The fullness
criterion requires that the external node v’ be ad-
jacent to at least a proportion S of nodes in the

cluster G for some 8 > 0.

2. A threshold criterion. This requires that at least
one transition probability from v’ into a node in G
be bigger than v and that at least one transition
probability from G to v/ be bigger than ~ for some
v > 0.

Here « characterizes the change in the ratio of the num-
ber of edges in the cluster to the number of edges that G
would have if it were complete. In our BCP graph, this
change is negligible. And [ characterizes the number of
edges between a subgraph and an adjacent node. In ap-
pendix, results of using different «, 8 combinations are
tested to identify traps in the BCP structure. Small and
large «y are used with varying «, 8. Different «, 8 combi-
nations are tested to identify the single trap node in the
BCP structure. Small and large v are used with varying
a, B. Figure shows that at both small v = 107° and
large v = 0.5, various values of «, 8 combination can not
identify node v; as a trap.

Appendix C: Spectral Clustering for non-energy
based traps
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first and second normalized eigenvector elements of L.y as a
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